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SOLUTION OF THE EQUATIONS OF A REGULAR ELECTROSTATIC BEAM IN
THE PRESENCE OF EMISSION FROM AN ARBITRARY SURFACE
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An analytic solution of the equations of a regular electrostatic beam
in the presence of emission from an arbitrary surface under total space
charge conditions is given, It is assumed that the emitter is a coordi-
nate surface x* = const in an orthogonal system %t i=1, 2, 3), and
the emission-current density J is a given function ](xz, xs). The solu-
tion is represented in the form of series in x! with coefficients that are
functions of x, %% and determined from recurrence relations, In ex-
pansion along the length of an arc of the curvilinear axis x, which

is orthogonal to the emitter, the first correction of the Child-Lang-
muir 3/2 law is determined only by the total curvature (the sum of
the principal curvatures) of the emitting surface, Solution of the
problem in the formulation in question permits determination of the
collector shape that ensures the given distribution of the emission~
current density over the given surface.

A regular* monoenergetic nonrelativistic beam of
charged particles with the same value and sign of spe-
cific charge n in the absence of an external magnetic
field is described in the stationary case by a system
of differential equations, which in tensor form in an
arbitrary curvilinear coordinate system xi i=1, 2,
3) has the form
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where vi are the covariant velocity components; ¢ is
the scalar potential; p the space charge density; gik
the covariant metric tensor; and g = |gj)/ its deter-
minant. Equations (1) are written in the dimensionless
variables r°, V°, ¢° p° (r, V are the absolute values
of the radius vector and velocity vector)
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where the symbol for a dimensionless value is omitted;
«, U are constants, which have the dimension of
length and velocity, respectively.

The first equation in (1) represents the energy inte-
gral; the second reflects the fact that the velocity is a
potential vector; and the third and fourth are the equa-
tion of current conservation and the Poisson equation
{or the scalar potential.

Henceforth we shall assume that the emitting sur-
face coincides with one of the surfaces x' = const of
the orthogonal coordinate system xi i=1, 2, 3). With-
out loss of generality, the constant can be assumed to

*According to [1], we shall call the flow regular if
the generalized momentum of the particle is a poten-
tial vector,

equal zero. As is known, most interesting from a prac-
tical point of view are regimes with emission limited
by the space charge: on the emitter xl=0
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where J(xz, x%) is the emission-current density, and
vxi are the physical velocity components.

Let us seek the solution of problem (1), (3) in the
form of series in x! with coefficients that are func-

tions of x°, x%
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decomposing in similar series the elements of the

metric tensor gj, gl¥, Vg and the combinations
Vg gik:
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The coefficients Gy, o), fk, Yk can be expressed
in terms of Ak, Bk, Ci or interms.of ¢, bk, Ck.

If we have expansions for the covariant velocity
components vi, then it is easy to move to the physi-
cal components vy (h is a fixing index),
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Examination of the conditions for regularity of flow
indicates that ® = € = 5/3 and makes it possible to ex-
press the coefficients of the expansions v, and vy in
terms of Ug:
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Thus, when (3)is satisfied, the particles leave the
emitter at a right angle to it [2].
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If we substitute the expressions for vi into the first
equation of (1), we obtain

Ps == '2 [(Uk +22Uz 1 a-ta) Agak +

=

k
+(2 120 UzU-zk-z+1) Agonimy + (sz, +2 121 Vl—lvzk—l-.\-l) Bs-gk-2 +
k ¥
+(2 lEOVlVﬂc—l-u) By g+ (Wit 4 2 12 WiaWag_1g) X
— =1

k

X Csgoz -+ {2 12—0 W Wk 141) CS—ZR--:i] (s=0,1,...). (7)

Summation with respect to k is controlled by the
subscripts of A, B, C: for a fixed s, all values of k
that give nonnegative subscripts are allowable. The
coefficients with negative subscnpts are by definition
equal to zero.

If we use the Poisson equation, we find
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Here it should be borne in mind that the sum with
respect to s from a to b is equal to zero if b < a,

In order to obtain relations that determine the co~
efficients of expansions (4), it remains to use the last
condition of (3), which relates U, and J, and the equa-
tion of current conservation. If we equate the coeffi-
cients of identical powers of x!, we have
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Since a simple relation (6)—(8) exists between the
coefficients of expansions (4), it is sufficient to exam-
ine one of series (4), for example, for the potential,

Using (7)—(9), we find
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As is known, the surface x! = const is characterized
at each point by two of its principal curvatures %, and
ny or the total curvature T = w4 + n, and the Gaussian
curvature K = g1y, According to the Gauss theorem

[3]. K belongs to the internal geometry of the surface,

i.e., it is completely determined by the assignment
of the metrics on it:
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where I‘%,k is a Christoffel symbol of the second kind.
Taking the convolution with respect to i, j and consid-
ering that the examination is being carried out in an
orthogonal coordinate system, we obtain
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Now if we use the conditions of a Euclidean space,
which are expressed by equating the Riemann-Chris-
toffel tensor to zero (six Lamé identities), we arrive
at the following expression for the Gaussian curvature
of the surface x! = const in orthogonal Euclidean co-
ordinates xi:
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On the other hand, for the total curvature T we have

[4]
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From (11), (12) it is apparent that the principal
curvatures %y and %, are determined by the expres-
sions

i 01n gy 1

2=

.01n gam
2 Ven 088 - (13)

Let us dwell in more detail on the first two terms
of the expansion of the potential. Bearing in mind that

we have
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where s = a/2%x!. The meaning of s will be explained
subsequently. Note only that whereas the curvilinear
coordinate x! can have any dimension when we return
to dimensional values, s will have the dimension of
length, ,

The first term of expansion (14) represents the
well-known law of 3/2 for a plane diode [5, 6] in local
notation [J =J?, x°)]. The correction to it, which
is expressed by the second term, is a function of the

properties of the surface itself (through its total curva-
ture) as well as of the sense of the parameter in which
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the expansion is made. In order to explain this, we
note that in a cylindrical diode with an emitter R = 1
and J = const, as x! we can use, for example,

(ty =R — 1, @y t=IlR,
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Papers [7, 8] were devoted to the construction of
expansions with x! in the form of (2°),  (3°). For (1°)—
(3°) we have, respectively,
g1 = exp (22'),
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Formula (14) takes on a universal form if the ex-
pansion is carried out along the length of the arc 8 of
the curvilinear axis x*
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If we expand the integrand in a series in x! and inte-
grate, we obtain
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Thus, s is the principal term of the expansion of
the length of the arc S in x!, If we express s in terms
of §
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When S — 0, it is sufficient to limit the expansion
to the first term, which represents the Child-Lang-
muir solution in the plane case (when T = 0 and J =
= const). For cylindrical and spherical diodes, gen-
eral expression (17) gives, respectively,
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The next terms of the expansion can be treated sim-
ilarly, Thus, on the basis of the definition of G,, we
obtain
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Now for @4/, in expansion (17) we have
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Here the subscripts S, P, Q indicate differentiation
with respect to the lengths of the arcs of the curvilin-

ear axes x', x%, x°,

P—\Vemde, @ ={Vindz
and ky, ky and 64, 05 are the principal curvatures of
the surfaces x* = const and x° = const, respeclively,

calculated for x1v= 0

i @ ? 2

PP T SR B T

Formulas (6)=(9) determine the analytic solution of the equations
of a regular electrostatic beam in the presence of emission limited
by space charge. Each successive term of the expansion is found from
linear algebraic equation (9). These equations, however, quickly be-
come more and more cumbersome, It is advisable, therefore, to turn
to high-speed electronic computers to obtain a solution with fairly
high accuracy. Thus, we can calculate two-dimensional and three-
dimensional flows from a surface of specified form and with a given
emission~current density and construct families of equipotential sur-
faces, each of which can be taken as a collector.
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